На правах рукописи

НОВИКОВА Светлана Евгеньевна

Транскриптомика и протеомика индуцированной дифференцировки клеток линии HL-60.

03.01.04-биохимия

ΑΒΤΟΡΕΦΕΡΑΤ

Диссертации на соискание ученой степени кандидата биологических наук

Москва 2017

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Научноисследовательский институт биомедицинской химии имени В.Н. Ореховича», в лаборатории системной биологии отдела протеомных исследований и масс-спектрометрии.

Научный руководитель:	доктор биологических наук, профессор РАН,						
	Згода Виктор Гаврилович						
Официальные оппоненты	Шевченко Валерий Евгеньевич						
	доктор биологических наук, профессор, ФГБУ						
	«Национальный медицинский исследовательский						
	центр онкологии им. Н.Н. Блохина» Минздрава						
	России, Научно-исследовательский институт						
	канцерогенеза, руководитель лаборатории						
	Кротов Григорий Иванович						
	кандидат биологических наук, ФГБУ «ГНЦ						
	Институт иммунологии» Федерального медико-						
	биологического агентства России, научный						

сотрудник

Ведущая организация: Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи»

Защита состоится «30» ноября 2017 г. в 11 часов на заседании диссертационного совета Д 001.010.01 при Федеральном государственном бюджетном научном учреждении «Научноисследовательский институт биомедицинской химии имени В.Н. Ореховича» по адресу: 119121, Москва, ул. Погодинская, д. 10, стр. 8.

С диссертацией можно ознакомиться в библиотеке и на сайте ИБМХ www.ibmc.msk.ru.

Автореферат разослан____ 2017 г.

Ученый секретарь диссертационного совета, кандидат химических наук

blog

Карпова Е.А

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы и степень ее разработанности

Процесс дифференцировки лежит в основе роста и развития живых организмов, регенерации тканей и органов [Chen K. et al., 2013]. Представление о молекулярном механизме, лежащем в основе созревания клеток, необходимо для выяснения патогенеза опухолей, а также для поиска новых подходов к лечению онкологических заболеваний.

Нарушение дифференцировки миелоидных клеток-предшественников вызывает острый промиелоцитарный лейкоз (ОПЛ), отличающийся высокой степенью злокачественности. Принцип лечения – дифференцирующая терапия - базируется на способности опухолевых промиелоцитарных клеток под действием определенных химических веществ (полностью *транс*-ретиноевая кислота (ATRA), диметилсульфоксид (DMSO), 12-Отетрадеканоилфорбол-13-ацетат (TPA), витамин D₃, дифференцироваться в зрелые нейтрофилы или моноциты/макрофаги, в зависимости от добавляемого индуктора [Collins S.J et al., 1987; Birnie G.D. et al., 1988].

Применение молекулярно-биологических методов к исследованию индуцированной дифференцировки клеток ОПЛ позволило определить ряд регуляторных молекул, важных для реализации дифференцировки, таких как, рецепторы к ретиноевой кислоте (RARs), рецепторы к витамину D₃, ядерные корепрессоры (N-CoR1, SMRT и HDAC) и коактиваторы (P/CAF и p300/HAT) [Tang Y. et al., 2011], AKT киназу [Matkovic K. et al., 2006], каталитическую субъединицу теломеразы [Xu D. et al., 1999]. В то же время, в настоящий момент отсутствует полное представление о передаче сигнала в ATRA индуцируемых к дифференцировке клетках ОПЛ.

Для исследования молекулярной основы процесса дифференцировки необходимо применение системного подхода, основанного на получении данных об изменении количественного и качественного состава молекул в клетке на всех уровнях: геномном, транскриптомном и протеомном. Кроме того, крайне важным является рассмотрение функциональной взаимосвязи экспериментальных данных В для поиска новых регуляторных молекул, вовлеченных В процесс дифференцировки. Сочетание транскриптомных и протеомных методов с биоинформатической обработкой данных позволяет создавать модели биологических процессов и выявлять потенциальные регуляторные молекулы. Информация о новых потенциальных регуляторных молекулах, вовлеченных в процесс дифференцировки клеток, может быть полезна для разработки новых стратегий лечения ОПЛ.

1

Цель и задачи работы

Целью настоящей работы явилось определение молекул мРНК и белков, задействованных в индуцированной гранулоцитарной дифференцировке клеток линии HL-60. Были поставлены следующие задачи:

1. Осуществить молекулярное профилирование клеток линии HL-60 в процессе ATRAиндуцированной дифференцировки на транскриптомном и протеомном уровне:

a) получить данные об уровне экспрессии транскриптов в ходе дифференцировки с применением полногеномного транскриптомного анализа;

б) получить протеомные данные с применением панорамной масс-спектрометрии высокого разрешения в комбинации с относительным количественным анализом без использования стабильных изотопных меток;

2. Построить модельную схему дифференцировки на основании данных об изменении уровня экспрессии транскриптов и белков в процессе созревания клеток линии HL-60.

3. Сопоставить молекулы модельной схемы с данными транскриптомного профилирования результатами масс-спектрометрического анализа И и проверить количественные изменения потенциальных регуляторных молекул с использованием направленной масс-спектрометрии.

Научная новизна работы

Впервые был проведен системный анализ индуцированной дифференцировки клеток линии HL-60 с одновременным профилированием уровня мРНК и белков в различные временные точки после воздействия индуктора и компиляция полученных данных для биологического процесса. ATRAсоздания модели Впервые для исследования индуцированной дифференцировки клеток линии HL-60 применили направленный массспектрометрический анализ в режиме мониторинга параллельных реакций (parallel reaction monitoring, PRM) и в режиме мониторинга выбранных реакций (selected reaction monitoring, SRM) для оценки количественного профиля 18 и 10 белков, соответственно, через 3, 24, 48 и 96 ч после добавления ATRA. Для 10 вышеупомянутых белков определили абсолютное содержание в данной клеточной линии методом SRM. Для тирозиновых протеинкиназ LYN и FGR, протоонкогена VAV1, ругулируемой PML-RARa адаптерной молекулы 1 (PML-RARA-regulated adapter molecule 1, PRAM1) и гиперметилированного при раке белка 1 (Hypermethylated in cancer 1 protein, HIC1) обнаружили увеличения содержания на транскриптомном и протеомном уровне по мере прохождения индуцированной дифференцировки. По результатам моделирования in silico поли(АДФ-рибоза) полимераза (PARP1) была выявлена в качестве ключевой молекулы, задействованной в регуляции АТRА-индуцированной дифференцировки клеток линии HL-60. В то же время, для транскрипционного фактора (ТФ) модельной схемы HIC1 было выявлено увеличение экспрессии на уровне мРНК уже через 30 мин после добавления ATRA, и была

2

зарегистрирована экспрессия на уровне белка, начиная с 24 ч после начала дифференцировки.

Теоретическая и практическая значимость работы

Модельная схема, построенная по результатам исследования, может представлять молекулярный путь обхода делеции гена, кодирующего онкосупрессор p53, одной из основных мутаций в клетках линии HL-60, определяющей пролиферативную активность и арест дифференцировки.

В процессе исследования была разработана платформа, объединяющая методы исследования транскриптома и протеома с биоинформатическим алгоритмом для предсказания модели межмолекулярных взаимодействий, вызывающих регистрируемые в эксперименте количественные изменения транскриптов и белков. Подобная платформа может быть применена для сравнения различных состояний биологических объектов на системном уровне и может быть использована для мониторирования ответа на действие лекарственных препаратов, для определения молекулярной гетерогенности опухолей и других целей персонализированной медицины.

Использование ингибиторов PARP1 (ключевой молекулы модельной схемы) в качестве монотерапии или в комбинации с традиционными препаратами для лечения ОПЛ может оказаться альтернативным направлением в лечении этого заболевания, что может решить проблему развития резистентности к ATRA у больных острым промиелоцитарным лейкозом.

Молекулы LYN, VAV1, FGR, PRAM1 и HIC1, содержание которых увеличивалось на транскриптомном и протеомном уровне по мере прохождения индуцированной дифференцировки, могут также представлять интерес с точки зрения терапии ОПЛ. Направленная активация этих молекул, возможно, позволит потенцировать действие ATRA, что позволит снизить дозу препарата, таким образом, уменьшив риск развития тяжелых побочных эффектов, таких как синдром дифференцировки.

Методология и методы исследования

В диссертации использованы современные методы культивирования клеток линии HL-60, методы индукции клеток линии HL-60 к дифференцировке с использованием ATRA и определения цитотоксичности ATRA с использованием MTT теста. Для оценки прохождения клетками дифференцировки применяли анализ экспрессии поверхностных маркеров CD11b и CD38 методом проточной цитофлуориметрии. Для транскриптомного профилирования клеток линии HL-60 использовали полногеномный транскриптомный анализ на высокоплотных чипах. Для протеомного профилирования клеток линии HL-60 применяли панорамную тандемную масс-спектрометрию с последующим относительным количественным анализом масс-спектрометрических данных без использования стабильных изотопных меток с помощью биоинформатической платформы SPIRE (Systematic Protein Investigative Research Environment analysis pipeline). Данные протеомного анализа обрабатывали в биоинформатическом программном обеспечении (ПО) geneXplain platform с привлечением данных транскриптомного профилирования для получения биоинформатической модели ATRA-индуцированной дифференцировки. Для валидации молекул модельной схемы и потенциально важных для прохождения дифференцировки молекул использовали методы направленной масс-спектрометрии SRM и PRM.

Личное участие соискателя в получении результатов, изложенных в диссертации

Соискателем был проведен анализ, отечественной и зарубежной литературы по теме диссертации, на основании чего были написаны раздел «Обзор литературы» диссертации и обзорная статья «Транскриптомика и протеомика в исследованиях индуцированной дифференцировки лейкозных клеток» в рецензируемом научном журнале. Автор диссертации непосредственно принимала участие в планировании и постановке экспериментов, самостоятельно проводила необходимые расчеты и статистическую обработку полученных экспериментальных данных. Представленные в диссертационной работе результаты получены либо лично соискателем (протеомные массспектрометрические эксперименты: панорамное профилирование высокого разрешения, направленный анализ в режиме SRM и PRM; биоинформатическое моделирование процесса индуцированной полностью транс-ретиноевой кислотой (ATRA) дифференцировки), либо при его непосредственном участии (транскриптомное профилирование на высокоплотных РНК чипах; культивирование клеток линии HL-60 и их индукция к дифференцировке под действием ATRA; оценка экспрессии поверхностных маркеров гранулоцитарной дифференцировки).

Основные положения диссертации, выносимые на защиту

Протеомное и транскриптомное профилирование клеток линии HL-60 после обработки ATRA в различные временные точки позволило определить изменение состава и уровня экспрессии мРНК и белков, уже через 30 мин и 3 ч, соответственно, в отсутствии выраженных фенотипических изменений, максимальное количество дифференциально экспрессирующихся транскриптов и белков выявляется через 96 ч после обработки ATRA, когда лейкозные клетки приобретают фенотип зрелых нейтрофилов. Среди дифференциально экспрессирующихся транскриптов можно было выделить группы молекул, задействованных в дифференцировке клеток, в том числе и миелоидного ростка.

Согласно биоинформатическому моделированию обработка клеток линии HL-60 с помощью ATRA запускает каскад межмолекулярных взаимодействий, начинающихся от рецептора к ретиноевой кислоте α (RARα) и поли(АДФ-рибоза)-полимеразы 1 (PARP1) и действующий на совокупность транскрипционных факторов (TΦ), что приводит к увеличению содержания TΦ HIC1 на транскриптомном и протеомном уровне, а также на

транскриптомном уровне к увеличению содержания ТФ AML3, IRF-7A, промежуточных молекул CASP9, UBC9 и IKBA, и уменьшению ТФ GATA2, RXR α и VDR, ключевой молекулы PARP1 и промежуточной молекулы DNA-PKcs.

Ключевая молекула модельной схемы PARP1 обнаруживается на уровне мРНК и белка. Содержание мРНК PARP1 значимо снижается через 96ч после воздействия ATRA, на уровне белка существует тенденция к снижению содержания в процессе ATRAиндуцированной дифференцировки.

В результате ATRA-индуцированной дифференцировки на протеомном уровне возрастает содержание белков LYN, VAV1, FGR и PRAM1, задействованных в регуляции пролиферации/дифференцировки и апоптоза.

Степень достоверности и апробация результатов.

Для решения поставленных задач в работе использовались современные инструментальные методы. Обсуждение результатов проведено с учетом современных данных медицинской и биологической наук. Научные положения и выводы, изложенные в диссертации, обоснованы и подтверждены фактическим материалом.

Основные положения диссертационной работы доложены и обсуждены на межлабораторном семинаре ИБМХ (Протокол №1 от 24.05.2017), а также в виде устного доклада на научной конференции молодых ученых «Молекулярная медицина и постгеномная биология» (Москва, Россия, 2012), в виде постерного доклада на конгрессе FEBS «Биологические механизмы» (Санкт-Петербург, Россия, 2013); в виде устного доклада на Конференции молодых ученых ИБМХ (Москва, Россия, 2015), в виде постерного доклада на конгрессе HUPO 2016 (Тайбей, Тайвань, 2016), в виде устного доклада на втором международном конгрессе INNMS 2016 (Москва, Россия, 2016).

Публикации.

По теме диссертации опубликовано 18 работ, из которых 14 статей в рецензируемых научных журналах и 4 публикации в трудах конференций.

Объем и структура диссертации

Диссертация изложена на 195 страницах машинописного текста, содержит 11 таблиц и 62 рисунка. Состоит из следующих разделов: Введение, Обзор литературы, Материалы и методы, Результаты, Обсуждение, Заключение, Выводы, Список литературы, который включает 169 источников, и Приложение.

СОДЕРЖАНИЕ РАБОТЫ

Транскриптомное и протеомное профилирование клеток линии HL-60 в процессе ATRA-индуцированной дифференцировки

Данные, получаемые на транскриптомном уровне, обеспечивают представление о молекулярном ответе клетки на стимул почти непосредственно после его воздействия, что важно для восстановления последовательности событий при передаче биологического сигнала. Таким образом, транскриптомное профилирование стало неотъемлемой частью системного исследования ATRA-индуцированной дифференцировки клеток линии HL-60. Сигнал транскриптомном был флуоресценции при полногеномном анализе зарегистрирован для 14606 генов в течение всего времени исследования. В результате транскриптомного анализа было обнаружено, что уже через 30 минут после индукции дифференцировки клеток линии HL-60 под действием ATRA более чем в 2 раза (p-value≤0, 05) изменялась экспрессия 19 генов, а через 1, 3, 24 и 96 ч изменялась экспрессия 60, 162, 235 и 1462 генов, соответственно. Результаты полногеномного транскриптомного профилирования и аннотации дифференциально экспрессирующихся транскриптов по категориям базы данных GeneOntology, связанных с различными биологическими процессами, показаны на рисунке 1.

Как видно из рисунка 1 дифференциально экспрессирующиеся транскрипты относятся к биологически значимым категориям GO Положительная регуляция дифференцировки клеток, Дифференцировка клеток, Дифференцировка лейкоцитов, Дифференцировка миелоидных клеток.

Процесс дифференцировки сопровождается глобальными изменениями фенотипа, которые определяются качественным составом и количественным содержанием белков в клетке. Применение масс-спектрометрии высокого разрешения позволяет различать сигнал от различных пептидов в сложных биологических образцах, к которым относится гидролизат клеток линии HL-60, тем самым позволяя проводить аккуратный количественный анализ.

Во временных точках 0, 3, 24, 48 и 96 ч было идентифицировано 1436, 1470, 1379, 1253 и 1210 белков с локальным уровнем ложноположительных идентификаций (locFDR) < 0,01, соответственно, с помощью биоинформатической платформы SPIRE. Для 1155 белков в программе SPIRE был осуществлен анализ относительного уровня экспрессии белков на основании количества MS2 спектров, приписанных принадлежащим им пептидам, во временных точках 3, 24, 48 и 96ч. Белки, демонстрирующие статистически значимое (p-value <0,05) изменение уровня экспрессии (fold change, FC) по сравнению с контролем в 1,5 раза и более, при условии, что коэффициент вариации между техническими повторами составил менее 30%, считались дифференциально экспрессирующимся.

Рисунок 1. Результаты полногеномного транскриптомного анализа на высокоплотных РНК чипах. (А-Д) Функциональная аннотация по категориям Gene Ontology (GO) транскриптов, дифференциально экспрессирующихся в 30 мин (А), 1 (Б), 3 (В), 24 (Г), 96ч (Д) (p-value<10⁻⁴), соответственно. Подписи секторов: название категории GO, количество дифференциально экспрессирующихся *в транскриптов*. Выделены сектора, соответствующие категориям, Положительная регуляция дифференцировки клеток, Дифференцировка клеток, Дифференцировка лейкоцитов, Дифференцировка миелоидных клеток. Е. Количество дифференциально экспрессирующихся рассирующихся транскриптов клеток линии HL-60 через 30 мин, 1, 3, 24 и 96 ч после обработки ATRA (FC>2, p-value<0.05).

На рисунке 2 показаны результаты сравнительного профилирования протеома клеток линии HL-60 в процессе ATRA-индуцированной дифференцировки с использованием массспектрометрии высокого-разрешения с последующим относительным количественным анализом полученных данных без использования изотопных меток в ПО SPIRE.

Рисунок 2. (А) Результаты относительного количественного анализа масс-спектрометрических данных в ПО SPIRE, соответствующих временным точкам 3, 24, 48 и 96 ч относительно контрольной временной точки 0 ч (в 3 биологических повторах), указано количество дифференциально экспрессирующихся белков (FC≥1,5, p-value<0,05, CV<30%). (Б) Тепловая диаграмма экспрессии белков клеток линии HL-60 через 0, 24, 3, 48, 96 ч после обработки ATRA, построенная в ПО SPIRE по результатам относительного количественного анализа масс-спектрометрических данных без стабильных изотопных меток. По горизонтали показаны временные точки, соответствующие 0, 24, 3, 48 и 96 ч, в трех биологических повторах; По вертикали продемонстрирована кластеризация профилей экспрессии всех белков, идентифицированных в эксперименте. Цифрами 1, 2, 3 обозначены основные кластеры. Зеленым цветом на рисунке отражено увеличение уровня экспрессии белков, в то время как красный цвет соответствует уменьшению уровня экспрессии.

Из рисунка 2 можно видеть, что дифференциально экспрессирующиеся белки были выявлены уже через 3 ч после добавления ATRA, а также что количество белков с измененным содержанием нарастает по мере прохождения дифференцировки, достигая максимума в 96 ч.

По результатам панорамного профилирования для каждой экспериментальной временной точки (3, 24, 48 и 96 ч) по сравнению с контрольной точной удалось сформировать тестовую выборку, включающую дифференциально экспрессирующиеся белки (p-value<0,05, FC \geq 1,5, CV<30%) и контрольную выборку (p-value \geq 0,05, FC<1,5, CV<30%), в дальнейшем используемые для анализа в ПО geneXplain.

Моделирование ATRA-индуцированной дифференцировки клеток линии HL-60 в ПО geneXplain

Белки, для которых в эксперименте регистрируется изменение содержания, могут находиться под контролем определенных транскрипционных факторов, а те в свою очередь испытывать влияние вышестоящих регуляторных молекул. Предполагая такую иерархическую систему регуляции можно построить модельную схему межмолекулярных взаимодействий.

Программное обеспечение geneXpain platform реконструирует процесс передачи сигнала в клетке в ответ на внешнее воздействие, принимая за основу набор молекул (транскриптов или белков), для которых экспериментально было выявлено изменение уровня экспрессии. На первом этапе анализа выдвигается гипотеза о транскрипционных факторах, с наибольшей вероятностью регулирующих белки ИЛИ транскрипты экспериментальной выборки, на втором этапе - гипотеза о ключевых молекулах, регулирующих набор транскрипционных факторов, определенных на первом этапе. Таким образом, осуществляется попытка моделирования цепочки молекулярных событий, которые привели к экспериментально зарегистрированным изменениям уровня экспрессии белков. Данные профилирования транскриптомного использовали процессе В гипотетических моделирования для отсечения TΦ И ключевых молекул, не экспрессирующихся в клетках линии HL-60 на уровне мРНК.

В таблице 1 приведены результаты первого этапа анализа в geneXplain platform: ТФ для каждой из временных точек, наиболее вероятно регулирующие дифференциально экспрессирующиеся белки в данной временной точке.

Используя перечисленные в таблице 1 ТФ, проводили поиск ключевых молекул и построение сетей, отражающих регуляцию дифференциально экспрессирующихся белков в процессе дифференцировки. В связи с тем, что ряд ТФ является общим для разных временных точек, было проведено объединение ТФ (всего 26 ТФ для всех временных точек). Результаты поиска ключевых регуляторов представлены в таблице 2.

8

Таблица 1. Результат поиска в базе данных TRANSFAC® (первый этап анализа в ПО geneXplain) транскрипционных факторов (ТФ), с наибольшей вероятностью регулирующих дифференциально экспрессирующиеся белки во временных точках 3, 24, 48 и 96 ч по сравнению с контролем (0 ч). Все приведенные в таблице ТФ экспрессируются в клетках линии HL-60 на уровне мРНК (по результатам полногеномного транскриптомного анализа)

ID	Название белка	3ч	24ч	4 8ч	96ч
POU2F1	POU domain, class 5, transcription factor 1	+*	+	+	н/д**
PBX3	Pre-B-cell leukemia transcription	+	+	+	н/д
ARNT	Aryl hydrocarbon receptor nuclear translocator	+	+	н/д	н/д
CUX1 (CDP)	Homeobox protein cut-like 1	+	+	н/д	н/д
NKX31 (NKX3A)	Homeobox protein Nkx-3,1	+	н/д	н/д	+
VDR	Vitamin D3 receptor	н/д	+	+	+ fc=0,2***
STAT1	Signal transducer and activator of transcription 1- alpha/beta	н/д	+	+	+
NFYC	Nuclear transcription factor Y subunit gamma	н/д	+	+	+
HSF1	Heat shock factor protein 1	н/д	+	+	н/д
PPARA	Peroxisome proliferator-activated receptor alpha	н/д	+	+	н/д
HSF2	Heat shock factor protein 2	н/д	н/д	+	+
NR1H3	Nuclear receptor subfamily 1 group H member 3	+	н/д	н/д	н/д
RARa (NR1B1)	Retinoic acid receptor alpha	+	н/д	н/д	н/д
RXRA	Retinoic acid receptor RXR-alpha	+	н/д	н/д	н/д fc=0,5
ZNF384	Zinc finger protein 384	+	н/д	н/д	н/д
IRF7	Interferonregulatoryfactor7	+	н/д	н/д	н/д fc=2,6
YY1	Transcriptional repressor protein YY1	н/д	+	н/д	н/д
HIC-1	Hypermethylated incancer1 protein	н/д fc=6,4	+ fc=7,3	н/д	н/д fc=8,9
EP300	Histone acetyltransferase p300	н/д	+	н/д	н/д
LMO2	Rhombotin-2	н/д	н/д	+	н/д
RFXANK	DNA-binding protein RFXANK	н/д	н/д	+	н/д
SRF	Serum response factor	н/д	н/д	+	н/д
RUNX2 (AML3)	Runt-related transcription factor 2	н/д	н/д	+	н/д fc=2,6
RBPJ (RBPJK)	Recombining binding protein suppressor of hairless	н/д	н/д	н/д	+
GATA2	Endothelial transcription factor GATA-2	н/д	н/д fc=0,3	н/д	+ fc=0,2
MAX	Protein max	н/д	н/д	н/д	+

 Предсказанные ТФ удовлетворяют статистическим условиям для данной временной точки: отношение плотности распределения участков связывания в генах тестовой и контрольной выборок > 1,4 с p-value <0,005.
** Статистические параметры предсказанного ТФ в данной временной точке ниже значимого уровня.
*** дифференциальная экспрессия транскрипта по сравнению с контролем по результатам полногеномного транскриптомного профилирования (p-value <0,05, FC>2).

Таблица 2. Результат поиска в базе данных TRANSPATH® (второй этап анализа в ПО geneXplain) ключевых молекул, с наибольшей вероятностью ответственных за изменение уровня содержания белков во временные точки 3, 24, 48 и 96 ч в процессе индуцированной АTRA дифференцировки клеточной линии HL-60, Т – временные точки, AN – имя ключевой молекулы, N – число регулируемых ТФ, Score – оценка в баллах, FDR – уровень ложноположительных результатов, Z-Score – Z-оценка, Ranks sum – ранговая сумма.

Т	AN	N	Score	FDR	Z-Score	Ranks sum
Combined	YY1	22	0,650	0.013	2,779	59
_3_24_48 96 ч	plk1	22	0,640	0.002	2,803	63
_,,,,,	PARP	22	0,607	0.006	2,950	63
	faim	22	0,607	0.006	2,950	64
	MKK6	22	0,721	0.004	2,325	88
	NR1B1(RARa)	22	0,505	0.018	3,007	204

В таблице 2 приведены 5 молекул (YY1, plk1, PARP, faim и MKK6) с лучшими статистическими показателями, сортированные по ранговой сумме, а также приведена ключевая молекула – рецептор ретиноевой кислоты NR1B1 (RARa), которая была выбрана на основании хороших оценок Score, Z-Score и FDR, и своей биологической значимости. Ключевой молекулой, представляющей наибольший интерес, является PARP. Молекула PARP была выбрана, поскольку по результатам моделирования транскрипционный репрессор YY1 находится под ее контролем, а plk1 не экспрессируется на уровне мPHK в клетках линии HL-60. Ключевая молекула PARP1 была зарегистрирована на транскриптомном и протеомном уровне.

Визуализация взаимодействия предсказанных ключевых молекул (RARα и PARP) и TΦ в модели ATRA-индуцированной дифференцировки клеток линии HL-60 приведена на рисунке 3.

Ядерный рецептор RARα является молекулярной мишенью для ретиноевой кислоты, индуцирующей дифференцировку клеток HL-60 [de The H. et al., 1989]. Интересно, что в промиелоцитарных лейкозных клетках линии HL-60 экспрессируется нормальный RARα рецептор, однако отсутствует экспрессия белка p53, вследствие обширной делеции соответствующего гена [Wolf D. and Rotter V. et al., 1985]. Вероятно, отсутствие функционального активного белка p53 может быть компенсировано альтернативными путями молекулярных взаимодействий при обработке индукторами дифференцировки, один из которых может представлять приведенная схема. Фермент PARP1 является ключевым регулятором репарации ДНК. В норме активирует онкосупрессор p53 путем добавления к нему полимера АДФ-рибозы (pADPr), участвуя, таким образом, в поддержании целостности генома [Kumari S.R. et al., 1998; Vaziri H. et al., 1997].

Рисунок 3. Модельная схема АТRА-индуцированной дифференцировки промиелоцитарных лейкозных клеток линии HL-60. Элементы схемы: транскрипционные факторы, TΦ (фиолетовый овал); промежуточные молекулы (оранжевый прямоугольник); ключевые молекулы (зеленые трапеции); синими стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы PARP1; красными стрелками показана передача сигнала от ключевой молекулы RARα. Обозначения типа взаимодействия между элементами модельной схемы: +p – фосфорилирование; +acetyl – ацетилирование; + drib – дезоксирибозилирование; +sumo – сумоилирование; inh – ингибирование; cleavage – расщепление; Экспрессия на транскриптомном уровне: все элементы модельной схемы детектировались на транскриптомном уровне; прямоугольником, разделенным на 5 секторов, показан относительный уровень экспрессии транскрипта; светло-синий цвет – умеренное уменьшение уровня экспрессии (в 2-5 раз); темно-синий цвет – выраженное уменьшение уровня экспрессии (в 5 и более раз); светло-розовый цвет – умеренное увеличение уровня экспрессии (в 2-5 раз); темно-орозовый цвет – выраженное увеличение уровня экспрессии (в 5 и более раз); экспрессия на протеомном уровне: звездочками обозначены элементы модельной схемы, зарегистрированные н

Сопоставление элементов модельной схемы с данными полногеномного анализа и масс-спектрометрическими данными (панорамная и направленная массспектрометрия).

Поскольку модельная схема является предсказательной, ее элементы нуждаются в экспериментальном подтверждении. Самым простым способом явилось сопоставление списка детектированных транскриптов и белков с элементами модельной схемы. В результате оказалось, что все элементы модельной схемы экспрессируются в клетках линии HL-60 на уровне транскриптов, таким образом, было показано существование физического субстрата для предсказанной модельной схемы. На протеомном уровне массспектрометрическим методом удалось идентифицировать 8 молекул (ключевая молекула PARP1, ТФ HIC1, STAT1, YY1 и RBPJ, промежуточные молекулы DNA-PKcs, UBC9, CASP3 и CSBP1). На модельной схеме (Рисунок 3) соответствующие элементы обозначены звездочками.

В то же время, на рисунке 4 приведены молекулы модельной схемы, содержание которых изменялось более чем в 2 раза (p-value $\leq 0,05$) по сравнению с контролем, на уровне мРНК. Сниженной оказалась экспрессия ТФ GATA2, VDR и RXR α , промежуточной молекулы DNA-PKcs и ключевой молекулы PARP1. Надо отметить, что снижение

Рисунок 4. Дифференциальная экспрессия транскриптов, соответствующих элементам модельной схемы, через 30 мин, 1, 3, 24 и 96 ч после добавления ATRA (по результатам полногеномного транскриптомного анализа). Величина FC в каждой временной точке указывает, во сколько раз уровень экспрессии транскриптов отличается от такового во временной точке 0 ч (контрольная точка). Приведены транскрипты, дифференциально экспрессирующиеся как минимум в 2 раза (p-value≤0,05).

содержания VDR и RXRα наблюдалось ранее и оказалось ключевым для разделения гранулоцитарного и моноцитарно-макрофагального направления дифференцировки [Taschner S. et al., 2007; Gocek E. et al., 2012]. В дополнение, повышенный уровень экспрессии ТФ GATA2 был зарегистрирован в недифференцированных клетках линии HL-60 [Nagai T. et al., 1994], в то время как под воздействием ATRA уровень экспрессии мPHK ТФ GATA2 уменьшается в промиелоцитарных клетках линии NB4 [Liu T.X. et al., 2000].

В процессе ATRA-индуцированной дифференцировки клеток линии HL-60 увеличивалась экспрессия ТФ AML3, IRF7A и HIC1, а также промежуточных молекул UBC9, CASP3 и IKBA.

Наиболее примечательны изменения, выявленные для транскрипционного фактора гиперметилированного при раке белка 1 (HIC1), уровень мРНК которого изменялся, начиная с 30 мин после обработки ATRA, увеличиваясь к 96 ч почти в 9 раз по сравнению с контролем (0 ч). Используя метод SRM и синтетический изотопно-меченый пептидный стандарт, удалось выявить HIC1 на уровне белка (Рисунок 5).

Рисунок 5. Сравнение профилей (**A**) относительной экспрессии мРНК HIC1 (транскрипт) и (**Б**) результатов количественного направленного масс-спектрометрического анализа методом SRM с использованием синтетического пептидного стандарта со стабильной изотопной меткой (SRM); Величина FC (для транскрипта) в каждой временной точке указывает, во сколько раз уровень экспрессии транскриптов отличается от такового во временной точке 0 ч (контрольная точка), количество белка было определено в фмоль/мкг общего белка в 3 биологических повторах. (**B**) Сигнал от пептида LEEAAPPSDPFR ТФ HIC1 в образце клеток линии HL-60 через 96 ч и его изотопномеченого стандарта (heavy). (**Г**) Фрагмент модельной схемы, содержащий HIC1

Как видно из рисунка 5, начиная с 24 ч, регистрируется сигнал от пептида LEEAAPPSDPFR ТФ HIC1, что указывает на экспрессию HIC1 на белковом уровне.

Известно, что HIC1 является опухолевым супрессором, а его активация имеет антипролиферативный эффект [Valenta T. et al., 2006]. Ранее было показано, что белок HIC1 связывается с ТФ TCF4 и предотвращает активацию сигнального пути Wnt, способствующего пролиферации клеток. более того подобное взаимолействие предотвращает активацию TCF-респонсивных генов, таких как с-МҮС и циклин D1, что ведет к остановке пролиферации и аресту клеточного цикла [Valenta T. et al., 2006]. Помимо этого, HIC1 является транскрипционным репрессором гена, кодирующего циклин D [Jenal M. et al., 2010], сопутствующего прохождению клеточного цикла. Гены с-МҮС и циклин D1 также отрицательно регулируются опухолевым супрессором p53 [Rocha S. et al., Но J.S.L. et al., 2005]. В свою очередь, HIC1 2003; опосредует активацию

Рисунок 6. Сравнение профилей (A) относительной экспрессии мРНК PARP1 (транскрипт) и (Б) результатов количественного направленного масс-спектрометрического анализа методом SRM с использованием синтетического пептидного стандарта со стабильной изотопной меткой (SRM); Величина FC (для транскрипта) в каждой временной точке указывает, во сколько раз уровень экспрессии транскриптов отличается от такового во временной точке 0 ч (контрольная точка), количество белка было определено в фмоль/мкг общего белка в 3 биологических повторах. (B) Сигнал от пептида TLGDFAAEYAK ключевой молекулы PARP1 в образце клеток линии HL-60 через 96 ч и его изотопно меченого стандарта (heavy). (Γ) Фрагмент модельной схемы, содержащий PARP1. Звездочкой обозначена статистически значимая дифференциальная экспрессия (p-value $\leq 0,05$ для транскриптомных данных)

онкосупрессора p53 и транскрипционного фактора RARα путем транскрипционной репрессии деацетилазы SIRT1, отрицательно регулирующей онкосупрессор p53 и транскрипционную активность RARα [Chen W.Y. et al., 2005; Kang M.-R. et al., 2010]. Таким образом, формируется петля положительной обратной связи HIC1-SIRT1-p53 [Tseng R.-C. et al., 2009].

Как упоминалось ранее, клетки линии HL-60 несут RARα дикого типа, но ген, кодирующий p53 делетирован. В ATRA-индуцированных клетках линии HL-60 белок HIC1, будучи онкосупрессором, может играть важную роль в преодолении последствий делеции гена p53.

Поскольку PARP1 является ключевой молекулой модельной схемы, была исследован профиль его экспрессии (Рис. 6).

Ключевая молекула нашей модельной схемы PARP1, участвующая в активации p53, является ко-активатором транскрипционного фактора E2F1, положительно регулирующего HIC1 [Simbulan-Rosenthal C.M. et al., 2003]. Как и HIC1, PARP1 может играть важную роль в преодолении последствий делеции гена p53.

Результаты направленного масс-спектрометрического анализа

Содержание некоторых молекул модельной схемы (HIC1, PARP1, CASP3, UBC9, STAT1 и DNA-PKcs) и молекул, для которых в литературных данных есть информация о вовлеченности в ATRA-индуцированную дифференцировку клеток линии HL-60, оценили с помощью SRM метода с использованием изотопно меченных стандартных пептидов.

Результаты измерения в различные временные точки после добавления ATRA (0, 3, 24, 48 и 96 ч) показаны на рисунке 7.

Для белков LYN, VAV1, PRAM1, FGR и HIC1 были обнаружены наиболее выраженные количественные изменения в процессе ATRA-индуцированной дифференцировки клеток линии HL-60. Протеомный профиль экспрессии сравнили с результатами полногеномного транскриптомного профилирования (Рис. 8).

Для молекул PRAM1, VAV1, LYN и FGR увеличение содержания на уровне белка соответствовало увеличению содержания на уровне транскрипта. Белок VAV1 функционирует как фактор обмена гуаниновых нуклеотидов (GEF); задействован, прежде всего, в сигнальном пути Rho/Rac и специфично экспрессируется в гемопоэтической системе [Hornstein I. et al., 2004]. Фосфорилирование VAV1 необходимо для его активации и, как было показано ранее, сопровождает гранулоцитарную дифференцировку лейкозных клеток [Bustelo X.R. et al., 2000]. Протеинкиназы семейства Src, в частности киназа LYN, для которой в нашем исследовании было обнаружено увеличение содержания, способны фосфорилировать VAV1[Bustelo X.R. et al., 2000]. Также было показано, что VAV1 напрямую связывается с протеинкиназой SYK семейства Src, селективное ингибирование

Рисунок 7. Результаты SRM измерений с использованием изотопно-меченных стандартных пептидов для 10 белков клеток линии HL-60 через 0, 3, 24, 48 и 96 ч после добавления ATRA. А. Белки, содержание которых увеличивалось в процессе дифференцировки по сравнению с контрольной точной (0ч) (LYN, VAV1 и PRAM1). Б. Белки, экспрессия которых регистрировалась на уровне белка, начиная с 24 ч после добавления ATRA (HIC1 и FGR). В. Белки, содержание которых демонстрировало тенденцию к снижению в процессе дифференцировки по сравнению с контрольной точной (0ч) (STAT1, DNA-PKcs и PARP1). Г. Белки, содержание которых не менялось в процессе дифференцировки (CASP3 и UBC9).

которой приводит к нарушению гранулоцитарной дифференцировки [Bertagnolo V. et al., 2005]. Киназу SYK фосфорилирует FGR киназа [Katagiri K. et al., 1996], для которой в нашем исследовании было определено увеличение содержания на уровне мPHK (до 35 раз к 96 ч) и экспрессия на уровне белка, начиная с 24 ч. Киназа FGR совместно с киназой LYN препятствует преждевременной клеточной гибели путем апоптоза в процессе ATRA-индуцированной дифференцировки [Katagiri K. et al., 1996]. Интересно, что также VAV1 напрямую связывается с адаптерной молекулой SLP-76 [Bustelo X.R. et al., 2001], которая взаимодействует с другой адаптерной молекулой PRAM1 [Moog-Lutz C. et al., 2001], для которой в нашем исследовании было выявлено увеличение содержания. PRAM1, в свою очередь также может связываться с киназой LYN [Moog-Lutz C. et al., 2001]. Таким образом, координированное увеличение содержания VAV1, LYN, FGR и PRAM1 на уровне транскрипта и белка может отражать активацию сигнального пути, играющего важную роль в реализации ATRA-индуцированной дифференцированной дифференцированной дифференцированной сигнального пути, играющего важную

Рисунок 8. (А-В) Профили экспрессии белка, оценненые методом SRM (белок) и профили экспрессии мРНК (транскрипт) для PRAM1, VAV1, LYN. По оси х – временные точки после обработки ATRA; по оси у- величина FC указывает, во сколько раз уровень экспрессии транскрипта/белка в данной временной точке отличается от такового в контроле (0 ч). Для FGR киназы: Г – профиль экспрессии мРНК, Д - результат SRM анализа (3 биологических повтора). По оси х для – временные точки после обработки ATRA; по оси у (1) для Г - величина FC транскрипта, (2) для Д - фмоль/мкг тотального белка. Звездочкой обозначена статистически значимая дифференциальная экспрессия (p-value < 0,01 для протеомных данных, (p-value $\leq 0,05$ для транскриптомных данных)

ЗАКЛЮЧЕНИЕ

Целью настоящего исследования было выявить молекулы мРНК и белков, задействованных в реализации ATRA-индуцированной дифференцировки лейкозных клеток линии HL-60. В результате оценки дифференциальной экспрессии молекул мРНК и белков и биоинформатического анализа удалось построить модельную схему дифференцировки и выявить молекулы, содержание которых изменяется по мере созревания клеток.

Одной из ключевых молекул модельной схемы оказалась RARa, хорошо известная молекулярная мишень ATRA, что отражает адекватность моделирования биологического процесса. С другой стороны, в качестве ключевой молекулы была определена PARP1. Для PARP1 уже была замечена вовлеченность в развитие опухолей, более того ингибиторы PARP1 в настоящий момент времени используются для лечения солидных опухолей, главным образом, рака молочной железы. Возможно, применение ингибиторов PARP1 в качестве монотерапии или в сочетании с традиционными препаратами для лечения ОПЛ позволит развить новое направление в терапии этого заболевания. Помимо этого, молекулы PRAM1, FGR, LYN, VAV1 и HIC1, содержание которых нарастало по мере прохождения дифференцировки, могут рассматриваться ATRA-индуцированной В качестве потенциальных мишеней для лекарственных препаратов.

Разработанная в процессе исследования платформа, объединяющая полногеномный РНК транскриптомный анализ на высокоплотных чипах, панорамный массспектрометрический анализ высокого разрешения с последующим относительным количественным анализом без использования изотопных меток, биоинформатический поиск транскрипционных факторов и ключевых регуляторов, ответственных за наблюдаемые в эксперименте изменения содержания белков и мРНК, представляет ценность для практического применения в целях персонализированной медицины для мониторирования ответа на действие лекарственных препаратов и определение молекулярной гетерогенности опухолей.

Полученная нами модельная схема может отражать функциональное взаимодействие между важными биологическими регуляторами RARa и PARP1. Более того модельная указывает на то, что совместное воздействие RARa и PARP1 приводит к усиленной экспрессии транскрипционного фактора HIC1, тесно связанного с регуляцией пролиферации/дифференцировки и сигнальным путем белка p53. В целом, с учетом наличия в клетках линии HL-60 обширной делеции гена p53, модельная схема может представлять собой вариант обхода биологических последствий этой мутации, важную роль в котором играют ключевая молекула PARP1 и TФ HIC1. Наконец, координированное увеличение содержания белков и мPHK для PRAM1, FGR, LYN и VAV1 может представлять значимость для реализации ATRA-индуцированной дифференцировки клеток линии HL-60.

Системное исследование ATRA-индуцированной дифференцировки клеток линии HL60 было проведено впервые и достигло значимых результатов, углубляющих наше представление о биологии созревания клеток. Существует возможность экстраполяция использованной в данной работе методологической базы и результатов для дальнейших исследований гематологических и солидных опухолей и выяснения универсального механизма онкогенеза.

выводы

1. Ha ATRAпротеомного профилирования основании данных индуцированных к дифференцировке клеток линии HL-60 были получены списки дифференциально экспрессирующихся белков, в дальнейшем использованных для моделирования в ПО geneXplain. С помощью транскриптомного профилилирования были получены данные об экспрессии генов в процессе дифференцировки, которые были использованы при моделировании отсечения молекул, для не экспрессирующихся в клетках линии HL-60.

2. В ПО geneXplain была построена модельная схема ATRA-индуцированной дифференцировки клеток линии HL-60, ключевыми молекулами которой стали поли(АДФ-рибоза)-полимераза (PARP1) и рецептор к ретиноевой кислоте а (RARa).

3. Все молекулы модельной схемы были детектированы на транскриптомном уровне, и для 11 из 35 зарегистрировали значимое изменение уровня экспрессии мРНК более чем в 2 раза, в том числе для ключевой молекулы PARP1, 8 молекул из 35 были идентифицированы с помощью панорамной масс-спектрометрии на протеомном уровне, в том числе PARP1. Для транскрипционного фактора модельной схемы и опухолевого супрессора HIC1 выявили значимое увеличение на уровне мРНК и белка.

4. Для молекул PRAM1, VAV1, LYN и FGR, задействованных в регуляции апоптоза и клеточного цикла, выявили значимое увеличение на уровне мРНК и белка.

СПИСОК РАБОТ ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- Zgoda V.G. Chromosome 18 transcriptome profiling and targeted proteome mapping in depleted plasma, liver tissue and HepG2 cells/ V.G. Zgoda, A. T. Kopylov, O. V. Tikhonova, A. A. Moisa, N. V. Pyndyk, T. E. Farafonova, S. E. Novikova, A. V. Lisitsa, E. A. Ponomarenko, E. V. Poverennaya, S. P. Radko, S. A. Khmeleva, L. K. Kurbatov, A. D. Filimonov, N. A. Bogolyubova, E. V. Ilgisonis, A. L. Chernobrovkin, A. S. Ivanov, A. E. Medvedev, Y. V. Mezentsev, S. A. Moshkovskii, S. N. Naryzhny, E. N. Ilina, E. S. Kostrjukova, D. G. Alexeev, A.V. Tyakht, V. M. Govorun, A. I. Archakov // Journal of Proteome Research. 2013. V. 12. №1. P. 123-134.
- Ivanov A. Protein interactomics based on direct molecular fishing on paramagnetic particles: Practical realization and further SPR validation/ A. Ivanov, A. Medvedev, P. Ershov, A. Molnar, Y. Mezentsev, E. Yablokov, L. Kaluzhsky, O. Gnedenko, O. Buneeva, I. Haidukevich, G. Sergeev, A. Lushchyk, A. Yantsevich, M. Medvedeva, S. Kozin, I. Popov, S. Novikova, V. Zgoda, A. Gilep, S. Usanov, A. Lisitsa, A. Archakov. // Proteomics. – 2014. – V. 14. – Nº20. – P. 2261-2274.
- Ponomarenko E.A. Chromosome 18 transcriptoproteome of liver tissue and HepG2 cells and targeted proteome mapping in depleted plasma: update 2013/ E.A. Ponomarenko, A.T. Kopylov, A.V. Lisitsa, S.P.Radko, Y.Y. Kiseleva, L.K. Kurbatov, K.G. Ptitsyn, O.V. Tikhonova, A.A. Moisa, S.E. Novikova, E.V. Poverennaya, E.V. Ilgisonis, A.D. Filimonov, N.A. Bogolubova, V.V. Averchuk, P.A. Karalkin, I.V. Vakhrushev, K.N. Yarygin, S.A. Moshkovskii, V.G. Zgoda, A.S. Sokolov, A.M. Mazur, E.B. Prokhortchouck, K.G. Skryabin, E.N. Ilina, E.S. Kostrjukova, D.G. Alexeev, A.V. Tyakht, A.Y. Gorbachev, V.M. Govorun, A.I. Archakov// Journal of Proteome Research. 2014. V 13. №1. P. 183-190.
- Fesenko I.A. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens/ I.A. Fesenko, G.P. Arapidi, A.Yu. Skripnikov, D.G. Alexeev, E.S. Kostryukova, A.I. Manolov, I.A. Altukhov, R.A. Khazigaleeva, A.V. Seredina, S.I. Kovalchuk, R.H. Ziganshin, V.G. Zgoda, S.E. Novikova, T.A. Semashko, D. K. Slizhikova, V.V. Ptushenko, A.Y. Gorbachev, V.M. Govorun, V.T. Ivanov//BMC Plant Biology. – 2015. – V15. – №87. – P. 468.
- 5. Новикова С.Е. Транскриптомика и протеомика в исследованиях индуцированной дифференцировки лейкозных клеток/ С.Е. Новикова, Згода В.Г.// Биомедицинская химия 2015. Т.61. №5. С. 529-544.
- Moskaleva N.E. Spaceflight effects on cytochrome P450 content in mouse liver/ N.E. Moskaleva, A.A. Moysa, S.E. Novikova, O.V. Tikhonova, V.G. Zgoda, A.I. Archakov// PLoS One. – 2015. – V.10. – №11. – P. e0142374. – DOI.10.1371/journal.pone.0142374.
- 7. Скворцов В.С. Программа ProteoCat как инструмент планирования протеомного эксперимента/ В.С. Скворцов, Н.Н. Алексейчук, Д.В. Худяков, А.В. Микурова, А.В. Рыбина, С.Е. Новикова, О.В. Тихонова//Биомедицинская химия. 2015. Т. 61. №6. С. 770-776.
- Naryzhny S.N. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma/ S.N. Naryzhny, V.G. Zgoda, M.A. Maynskova, S.E. Novikova, N.L. Ronzhina, I.V. Vakhrushev, E.V. Khryapova, A.V. Lisitsa, O.V. Tikhonova, E.A. Ponomarenko, A.I. Archakov// Electrophoresis. – 2016. – V. 37. – № 2. – P. 302-309.
- 9. Poverennaya E.V. State of the Art on Chromosome 18-centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells/ E.V. Poverennaya, A.T. Kopylov, E.A. Ponomarenko, E.V. Ilgisonis, V.G. Zgoda, O.V. Tikhonova, S.E. Novikova, T.E. Farafonova,

Y.Y. Kiseleva, S.P. Radko, I.V. Vakhrushev, K.N. Yarygin, S.A. Moshkovskii, O.I. Kiseleva, A.V. Lisitsa, A.S. Sokolov, A.M. Mazur, E.B. Prokhortchouck, K.G. Skryabin, E.S. Kostrjukova, A.V. Tyakht, A.Y. Gorbachev, E.N. Ilina, V. M. Govorun, A.I. Archakov.// Journal of Proteome Research. $-2016. - V. 15 - N_{2} 11. - P. 4030-4038.$

- Naryzhny S.N. Proteomic profiling of high-grade glioblastoma using virtual-experimental 2DE/ S.N. Naryzhny, M.A. Maynskova, V.G. Zgoda, N.L. Ronzhina, S.E. Novikova, N.V. Belyakova, O.A. Kleyst, O.K. Legina, R.A. Pantina, M.V. Filatov M.V.//Journal of Proteomics & Bioinformatics. – 2016. – V.9. – № 6. – P. 158-165.
- Kopylov A.T. Targeted Quantitative Screening of Chromosome 18 Encoded Proteome in Plasma Samples of Astronaut Candidates// Journal of Proteome Research/ A.T. Kopylov, E.V. Ilgisonis, A.A. Moysa, O.V. Tikhonova, M.G. Zavialova, S.E. Novikova, A.V. Lisitsa, E.A. Ponomarenko, S.A. Moshkovskii, A.A. Markin, A.I. Grigoriev, V,G, Zgoda, A,I, Archakov// Journal of Proteome Research. – 2016. – V.15. – № 11. – P. 4039-4046.
- Novikova S.E. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation/ S.E. Novikova, O.V. Tikhonova, L.K. Kurbatov, T.E. Farafonova, I.V. Vakhrushev, V.G. Zgoda V.// European Journal of Mass Spectrometry. – 2017. – V. 23. – № 4. – P. 202–208.
- 13. Новикова С.Е. Омиксные технологии для диагностики аденокарциномы легкого/ С.Е. Новикова, Л.К. Курбатов, М.Г. Завьялова, В. Г. Згода, А.И. Арчаков// Биомедицинская химия. 2017. Т. 63. №3. С. 181-210.
- Anselm V. Re-adaption on Earth after Spaceflights Affects the Mouse Liver Proteome/ V. Anselm, S.E. Novikova, V.G. Zgoda// International Journal of Molecular Sciences. – 2017. – V. 18. – №8. – P. E1763.
- 15. Новикова С.Е. Протеомика индуцированной дифференцировки клеток линии HL-60 острого промиелоцитарного лейкоза человека / С.Е. Новикова, В.Г. Згода, О.В. // Научная конференция молодых ученых «Молекулярная медицина и постгеномная биология». Москва, 2012. С. 63.
- Novikova S.E. Combined proteome and transcriptome analysis of leukemia HL-60 cell differentiation / S.E. Novikova, N.E. Moskalyova, O.V. Tikhonova , I.V. Vakhrushev, K.N. Yarigin, V.G. Zgoda, E. Kolker , R. Higdon, A. Chernobrovkin, A.I. Archakov// Scientific Meeting for the Chromosome-centric Human Proteome Project (C-HPP), FEBS. – Saint Petersburg, 2013. – P.635.
- Novikova S.E. Transcriptomic and proteomic verification of predicted scheme of ATRA-induced HL-60 cell line differentiation / S.E. Novikova, O.V. Tikhonova. L.K. Kurbatov; I.V. Vakhrushev, V.G. Victor Zgoda// HUPO 15th Annual World Congress. – Taipei, 2016. – P.865.
- Novikova S.E. System biology of ATRA-induced HL60 cell line differentiation/ S.E. Novikova, O.V. Tikhonova, L.K. Kurbatov, I.V. Vakhrushev, V.G. Zgoda V.G. // 2-nd International Conference on "INNOVATIONS IN MASS SPECTROMETRY: INSTRUMENTATION AND METHODS". – Moscow, 2016. – P.69.